博客
关于我
R_R语言做主成分分析
阅读量:72 次
发布时间:2019-02-25

本文共 558 字,大约阅读时间需要 1 分钟。

首先,我们需要加载必要的库以支持后续的数据分析操作。代码如下:

library(psych)

接下来,我们从iris数据集中获取前四列数据,用于进行主成分分析。代码如下:

mydata <- iris[,1:4]

为了确定最优的主成分个数,我们可以使用scree plot方法。代码如下:

mydata.screePlotsModel <- fa.parallel(mydata, fa="pc", n.iter=100, show.legend=F, main="Scree Plot Analysis")

通过上述代码,我们可以得到最优的主成分个数。代码如下:

n <- mydata.screePlotsModel$ncomp

接下来,我们对数据进行主成分分析。代码如下:

mydata.pr <- princomp(mydata, scores=T, cor=TRUE)

为了直观地展示主成分分析结果,我们可以绘制scree plot图。代码如下:

screeplot(mydata.pr, type="line", main="Scree Plot", lwd=2)

最后,我们可以对主成分分析结果进行摘要,以获取更多详细信息。代码如下:

summary(mydata.pr, loadings=TRUE)

转载地址:http://kie.baihongyu.com/

你可能感兴趣的文章
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NI笔试——大数加法
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
No Datastore Session bound to thread, and configuration does not allow creation of non-transactional
查看>>
No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
查看>>
No Feign Client for loadBalancing defined. Did you forget to include spring-cloud-starter-loadbalanc
查看>>
No module named cv2
查看>>
No module named tensorboard.main在安装tensorboardX的时候遇到的问题
查看>>